Werner syndrome: a model for sarcopenia due to accelerated aging
نویسندگان
چکیده
Werner syndrome (WS) is a rare inheritable progeroid syndrome caused by a mutation in the WRN gene. Although WS has been described as a characteristic appearance of very slender extremities with a stocky trunk, few studies have investigated the loss of muscle mass, fat mass distribution (body composition), and mobility according to age and sex. Therefore, the aim of this study was to precisely describe the body composition in WS. Nine Japanese patients with WS (four males and five females; mean age 48±8.8 years) were recruited. Body composition was examined by dual-energy X-ray absorptiometry and computed tomography (CT). The hand grip strength and mobility were evaluated using the two-step test, stand-up test and 25-question geriatric locomotive function scale (GLFS). The mean skeletal muscle index (SMI) was 4.0±0.6 kg/m2. SMI of all patients met the criteria of sarcopenia, even though some patients were aged < 40 years. All patients also showed deceased mobility. In conclusion, these results indicate that all patients with WS, even those aged < 40 years, had already lost muscle mass to the level of sarcopenia. Continued research on sarcopenia in WS might facilitate the discovery of novel mechanisms and development of new treatment strategies for sarcopenia.
منابع مشابه
Accelerated epigenetic aging in Werner syndrome
Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS c...
متن کاملTelomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging
Werner syndrome (WS) patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mec...
متن کاملUse of p38 MAPK Inhibitors for the Treatment of Werner Syndrome
Werner syndrome provides a convincing model for aspects of the normal ageing phenotype and may provide a suitable model for therapeutic interventions designed to combat the ageing process. Cultured primary fibroblast cells from Werner syndrome patients provide a powerful model system to study the link between replicative senescence in vitro and in vivo pathophysiology. Genome instability, toget...
متن کاملSarcopenia and planning to management: review article
Life expectancy has increased throughout the world and, as a result, the population of the elderly is also rising. From the age of 30 years old, the human body mass loses about 0.1 to 0.5% of its skeletal muscle mass annually, which is accelerated after the age of 65 years old. Aging is characterized by a decrease in the progression of musculoskeletal and physical activity known as sarcopenia. ...
متن کاملRecent Advances in Understanding Werner Syndrome
Aging, the universal phenomenon, affects human health and is the primary risk factor for major disease pathologies. Progeroid diseases, which mimic aging at an accelerated rate, have provided cues in understanding the hallmarks of aging. Mutations in DNA repair genes as well as in telomerase subunits are known to cause progeroid syndromes. Werner syndrome (WS), which is characterized by acceler...
متن کامل